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We are concerned with the covariant description of the Hamiltonian formalism 
for constrained field systems. The relation with the Lagrangian formalism is 
considered and applications to gauge theories are given. Both formalisms are 
developed on the same space, namely the momentum space. The equivalence of 
solutions is shown to hold for affine and quadratic Lagrangians. The Yang-Mills 
equations are put into a Hamiltonian form by means of a complete family of 
Hamiltonians. This completeness property appears in a nice way as a gauge-type 
condition connected with the Hamilton equations and generalizing the notion of 
gauge condition usually dealt with in gauge theory. 

1. I N T R O D U C T I O N  

As is well known, the geometric arena of classical field theory (and 
other physical models) is a fibered manifold E --> M. The base manifold M 
may be a space-time manifold, a space of parameters, etc. Classical fields 
are sections of  this fibered manifold. 

The Lagrangian formulation of field theory is developed on j 1E ,  the 
first-order jet prolongation of  E --~ M (or on higher order prolongations for 
higher order theories), and the field equations are second-order equations, 
i.e., Lagrange's equations (Krupka, 1971; Mangiarotti and Modugno, 1983). 

In the past decades, the standard Hamiltonian machinery based on Dirac's 
ideas has been developed (Hanson et al., 1976; Sundermeyer, 1982). This 
leads to infinite-dimensional symplectic manifolds (Gotay et al., 1978; Kos- 
mann-Schwarzbach, 1981; Bergvelt and De Kerf, 1986). The main goal 
consists in establishing simultaneous commutation relations for quantum field 
theories (Sundermeyer, 1982; Faddeev and Slavnov, 1991). 
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On the other hand, in more recent years, many people have contributed 
to setting up a covariant Hamiltonian formalism for field theory, i.e., one 
which does not necessitate any space-time decomposition (Kijowski, 1973; 
GUnther, 1987; Carin~na et  al., 1991; Gotay, 1991; Sardanashvily and Zakh- 
arov, 1992a,b). It seems that the choice of the space in which such a Hamilto- 
nian description is formulated is far from being unique. 

The relationship between the Lagrangian and Hamiltonian formalisms 
has also been extensively studied, both in mechanics (Batlle et  al., 1986) 
and field theory (Gotay, 1991; Goldschmidt and Stenberg, 1973; Dedecker, 
1977; Krupka, 1982), generally under strong regularity conditions. 

However, due to the presence of gauge invariance, the interesting physi- 
cal models never have this kind of regularity. Nevertheless they still retain 
a weaker regularity property (in the sequel we shall refer to these systems 
as almost regular, a.r.). For them, the problem of the equivalence between 
the Lagrangian and Hamiltonian approaches is more subtle and deserves 
further investigation. 

In this paper we study this problem for first-order field theories (similar 
questions for higher order theories are under study). We do not follow the 
traditional approach in which the Lagrangian and Hamiltonian formalisms 
are set up on different spaces. Instead, following Kijowski and Tulczyjew 
(1979), we develop both of them on P = ^'~-~ T * M  | V*E. In particular, 
we regard the Lagrange and Hamilton field equations as partial differential 
equations (pde's) for sections of the composite fibered manifold P ~ E ---) M. 

The main results and the organization of the paper are as follows. In 
Section 2 we fix our notation, summarizing some basic facts about jet mani- 
folds, the momentum manifold P, and its related structures. 

In Section 3 we study the Lagrangian and Hamiltonian formalisms 
independently of each other but in a rather 'symmetric' way. The solutions 
of the Lagrange equations are characterized by an affine subbundle L C J 1p 
with base manifold J 1E. We also introduce the concepts of Hamiltonian form 
and Hamiltonian map (Zakharov, 1992; Sardanashvily and Zakharov, 1992a,b; 
Giachetta et al., 1993). These are basic concepts for our considerations. 

Section 4 is the main section. Here we study a.r. Lagrangian densities. 
Using the family of Hamiltonian forms parametrized by all the Hamiltonian 
maps, we show that the Lagrange equations are equivalent to the correspond- 
ing family of Hamilton equations. The constrained Hamilton equations are 
regarded as an affine subbundle H C j1p with base manifold Q c P, the 
constraint manifold. It turns out that L C H and there are systems for which 
L ~ H. This means that, in general, the Lagrange and the constrained 
Hamilton equations are not equivalent. However, if the Lagrangian density 
is affine or quadratic in the field derivatives (as is the case for most physical 
models), then we show that L = H. 
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In Section 5 we consider the (free) Yang-Mills Lagrangian density. Now 
the configuration bundle E ---- C ---) M is a bundle of principal connections, 
which has some specific properties. In particular, both the first jet manifold 
J~C and the momentum manifold P admit a canonical splitting over C. A 
consequence of this geometrical feature is that there is a natural family of 
Hamiltonian maps, and hence of Hamiltonian forms. It turns out that this 
family is complete in the sense that it is the minimal family whose correspond- 
ing Hamilton equations are equivalent to the Yang-Mills equations. This 
completeness property appears in a nice way as a kind of gauge-type condition 
connected with the Hamilton equations. 

2. THE MOMENTUM SPACE 

All manifolds and maps throughout the paper will be smooth (Ca). For 
more details on the jet formalism we refer the reader to Mangiarotti and 
Modugno (1982) and Saunders (1989). 

2.1. Jet Manifolds and Connections 

Let M be a manifold of dimension m >-- 1 with local coordinates (xX), 
1 -< k --- m. We denote by T M  and T*M the tangent and cotangent spaces 
of M and use the symbols | v, and A for tensor, symmetric, and exterior 
products, respectively. 

Let E --~ M be a fibered manifold of dimension m + l (E is the total 
space and M is the base) with fiber coordinates (x • yi), 1 <-- i <- l. We denote 
by VE C TE the vertical subspace of TE, with local coordinates (x h, yi, yi), 
and by V*E its dual (over E). 

We have the tower of fibered manifolds 

J1E ---> E ---> M (2.1) 

where J IE  is the first jet manifold with fiber coordinates (x h, yi, y~). If we 
consider a (local) section of E --> M, i.e., 

s: M ---> E, (x h, yi) o s = (x h, s i) 

where s i are (local) functions on M, then the (local) expression of its first 
jet prolongation j is: M --> J IE  is given by (x h, yi, y~) oja s = (x h, s i, Osi/Oxh). 

In the sequel, we shall denote by Oh =- O/Ox ~, Oi =- O/Oy i, and 0) - 
O/Oyi~ the coordinate fields associated with x h, yi, and y~, respectively. 

A basic fact concerning J IE  is the existence of a canonical injection 
over E, 

h 

J1E "-, T*M | TE, k = dx h | (Oh + y~Oi) (2.2) 
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from which it follows that J1E ---> E is an affine bundle whose associated 
vector bundle is T*M | VE ---> E. As a rule, induced linear fiber coordinates 
on this bundle will be denoted by (x x, yi, y~). 

2.2. The Structure of the Momentum Space 

The fibered manifold E --+ M is the configuration manifold of a given 
field system, while 

m--1 

P = / ~  T*M | V*E --+ E ---> M (2.3) 

is the corresponding momentum manifold. Obviously P --> E is a vector 
bundle. Induced fiber coordinates on P and its first jet manifold are denoted 
by (x x, yi, p/~) and (x x, yi, p~, y~, P~i), respectively. Note that j1p  _+ j l  E is 
a vector bundle, but j1p  __> p is an affine bundle whose associated vector 
bundle is T*M | VP --+ P. The induced linear fiber coordinates on this 
bundle are denoted by (x x, yi, pi ~, yix, fi~i). 

As happens for the cotangent space of a manifold, the momentum space 
(2.3) carries a canonical vector-valued Liouvilleform O. More precisely, 0 is 
the base-tangent (m + 1)-form on P given by the canonical injection 

m+l 
0 

P "-* / ~  T*E | TM 

0 : phidy i A to ~ ~ . ,  to : d x  1 A " ' "  /k d x  m 

Contracting 0 with the canonical injection (2.2), we get the following sca- 
lar form: 

O = - h i 0 :  P •  
E 

0 : p h  i 0 i A fOX, 0 i = d y  i - -  y i ~ d x ~  ( 2 . 4 )  

There are two basic objects related to the form (2.4). The first is 

~'~L = - -dhO:  j1p  ___> L T*M | V*J1E 

f~L = (pXidyi + phidy~) | to (2.5) 

where dh denotes the horizontal exterior derivative on jet manifolds (Saunders, 
1989). This form will be used in the Lagrangian formalism. Note that f~L 
can be seen as a linear epimorphism over J1E. 

The second object related to (2.4) is 
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m+l 

OH = d~O: j 1 p  ~ A T*P 

l~t-i = dp~ ^ dyi ^ cox - y~dp~ ^ to + p~flyi ^ to (2.6) 

where dv denotes the vertical exterior derivative on jet manifolds (Saunders, 
1989). This form will be used in the Hamiltonian formalism. Note that [In 
can be seen as an affine morphism over P whose associated linear map is 

~H _m m+ l 

T*M | VP §  T*M | V*P C / ~  T*P 

f~n = -YixdpXi ^ to + P~idy i ^ to (2.7) 

Since (In is an epimorphism, it follows that the bundle Im On ~ P is an 
affine subbundle of ^m+l T*P ---> P whose associated vector bundle is A m 
T*M | V*P ---> P. 

The following commutative diagram summarizes the discussion: 

| V*JIE < j I p  ) Im  l ' InC 

\ /  
E 

M 

m+l 

A 

Its left and right parts are the geometric arenas to set up the Lagrangian and 
Hamiltonian formalisms, respectively. From the diagram, we see that with 
the help of suitable morphisms j I E  ---> P and P ---> J~E (over E), we can 
hope to relate the two formalisms. The morphisms J1E ~ P are the Legendre 
maps, while the morphisms P ---> J I E  are the Hamiltonian maps. 

3. LAGRANGIAN AND HAMILTONIAN FORMALISMS 

3.1. Lagrangian Formalism 

As is well known, the basic concept of the Lagrangian formalism is that 
of the Lagrangian density. A (first order) Lagrangian density is a form 

~:  J I E  ---> ~'~ T ' M ,  ~ = Lto, to = dr  1 ^ " "  ^ dx ~ (3.1) 

where L is a local function on J rE. 
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A Legendre map is a morphism over E, i.e. 

H: j 1 E  _+ p, (x ~, yi, p/x) o II  = (x ~, yi, H/x) (3.2) 

where II/X are local functions on J1E. Given a Lagrangian density ~s there 
is a Legendre map canonically associated with it, namely 

H: J1E ---> P, II/X = O/XL (3.3) 

The Poincard-Car tan  f o r m  associated with ~ is (Mangiarotti and 
Modugno, 1983) 

~ = (O + ~g)o I-I: 

~:~ = O/XL dy i A cox - H~e~, 

where H is given by (3.3). 

J1E ---) A T*E  

H~e = yJxO~L - L (3.4) 

Taking the exterior derivative of the Lagrangian density (3.1), we get 
the section 

d~:  J l E  --~ ~ x  T*M @ V*j1E 

d ~  = (OiL dy i + OX L dye) | o~ (3.5) 

Then the Euler -Lagrange  operator  associated with the Lagrangian density 
is the morphism over j 1 E  defined by 

%~ = d ~  - OL: j l p  ___)//~ T*M @ V*J1E 

%~e = (OiL - pXi)to | dy i + (O/XL - p/x)o | dy~ (3.6) 

where I)L is given by (2.5). Note that %~e is an affine epimorphism over j1E.  
Let us denote the kernel of %~e by L; it is an affine bundle over J~E. A 
section r: M --~ P satisfies the Lagrange equations if it is an integral section 
of L, i.e., j l r ( x )  ~ L for all x (in the domain of definition of r). If we 
write locally 

yi  o r = s i, p/x o r = r/x 

where s i and r/x are local functions on M, then the Lagrange equations are 

r/x = O/XL o r, Oar x = OiL ~ r (3.7) 

3.2. H a m i l t o n i a n  F o r m a l i s m  

A Hamiltonian f o r m  is a scalar m-form on P of the following type: 

~ :  P ---) ~X T ' E ,  ~ = pXdyi ^ to x - Hto (3.8) 

where H is a local function on P. 
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Global Hamiltonian forms always exist because they are sections of an 
affine bundle over P (Carin~na et al., 1991). 

A Hamiltonian map is a morphism over E, i.e., 

+ 

p __> j l E ,  (x x, yi, y~) o ~b = (x x, yi, djx) (3.9) 

where qb~ are local functions on P. Given a Hamiltonian form, there is a 
Hamiltonian map canonically associated with it, i.e., 

+: P ---> J tE,  dpk = O~xH (3.10) 

In analogy with the Euler-Lagrange operator (3.6), the Hamilton opera- 
tor associated with a Hamiltonian form ~ is the morphism over P defined by 

m 

%~ = d ~  - ~u:  j 1 p _ +  / ~  T , M  | V , p  

%~ = (Yk - akH)~o | dp~ - (P~,i + OiH)o~ | dy ~ (3.11) 

where l~n is given by (2.6). Note that %~ is an affine epimorphism over P. 
A section r: M -+ P is said to satisfy the Hamilton equations relative to the 
Hamiltonian form ~ if %~ o j l r  = 0. Locally the Hamilton equations read 

O• i - OixH o r = O, OxrXi + Oi H o r = 0 (3.12) 

4. CONSTRAINED SYSTEMS 

As is well known, in the regular case the Lagrangian and Hamiltonian 
descriptions are equivalent (at least locally) (Giachetta et al., 1993). On the 
other hand, as mentioned in the Introduction, most of the physical models 
meet a weaker kind of regularity, which we now consider (Binz et al., 1988; 
Zakharov, 1992; Sardanashvily and Zakharov, 1992a,b). 

4.1. Almost Regular Lagrangian Densities 

Let ~ be a Lagrangian density and let 1I be its associated Legendre 
map. Let Q = II(j1E). Then ~ is said to be almost regular if: 

(i) Q c P is a (closed and regular) submanifold and Q ---> E is a fibered 
submanifold of P --> E. 

(ii) The Legendre map 1I: JlE---> Q is a submersion with connected fibers. 

Let ~ be an a.r. Lagrangian density. We say that a Hamiltonian map #,: 
P -+ J1E is associated with ~ if 

II o ~b oj  = j (4.1) 
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where j denotes the canonical inclusion. In other words, the restriction cb I Q: 
Q ----> J I E  is a section of the submersion II: j I E  ---> Q. 

Remark 4.1. For most of the physical models the fibered manifold II: 
J I E  ---> Q has global sections. This condition guarantees the existence of 
global Hamiltonian maps associated with ~ .  

Let ~ be an a.r. Lagrangian density. We say that a Hamiltonian form 
is associated with ~ if it is of the following type: 

~+  = (O + ~ ) o  ~b: P - - - ~ f ' k T * E  

H+ = p)qbk - L o + (4.2) 

where 6: P --~ j 1E  is a Hamiltonian map associated with ~ and O is given 
by (2.4). 

The following proposition establishes some basic facts. 

Proposition 4.2. Let ~ be an a.r. Lagrangian density and let ~ e  be its 
Poincar6-Cartan form. Then ~ e  uniquely determines a form ~0:  Q ~ / ~ m  
T*E such that 

~ o  ~ II = ~ e  (4.3) 

Let ~+ be a Hamiltonian form associated with ~s as in (4.2) and let �9 be 
the Hamiltonian map associated with ~4, according to (3.10). Then we have 

o j = qb o j (4.4) 

j*~4,  = ~Q (4.5) 

Proof. For (4.3) see Binz et al. (1988). From (3.10) and (4.2) we see 
that �9 = qb + 0.4,, where 0.4, is the map given by 

~r+: P - ~ T * M |  

0.4, = (p}~ - O•L o qb)O[qb~dx x | O; (4.6) 

Since (4.1) implies 0- 4, o j = 0, the identity (4.4) is proved. Finally, 

~ Q =  ~ Q O l - l o ~ b o j =  ~ e ~ 1 7 6  ~ 4 , o j  

Remark  4.3. We collect together some important identities satisfied by 
an a.r. Lagrangian density and any associated Hamiltonian form ~ , .  They are 

O[H4, o j = +~x ~ j (4.7) 

OiH, o j = -Oi  L o + o j (4.8) 
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The first is the local expression of (4.4). Condition (4.8) follows from (4.2) 
by taking into account (4.1). 

As we know the Lagrange equations define an affine bundle L ~ JIE.  
If ~ is a.r., we have a canonical projection L --~ Q given by the composition 
of L ~ j I E  with the Legendre map 17: j 1 E  ~ Q. 

Using the identities (4.7) and (4.8), we easily prove the following 
proposition. 

Proposition 4.4. Let ~ be an a.r. Lagrangian density and let ~ ,  be a 
Hamiltonian form associated with it as in (4.2). Then we have 

Ker %~+[Q c L (4.9) 

Hence, if r: M ---) Q C P is a section compatible with the constraints which 
is a solution of the Hamilton equations relative to ~+, i.e., %~+ o j~r = O, 
then r is also a solution of the Lagrange equations. 

Remark  4.5. From (4.4) it follows that the first Hamilton equation (3.12) 
relative to ~ ,  is 

j l s  = qb o r (4.10) 

where r: M ---) Q c P is a section compatible with the constraints and s: M 
---) E is the section determined by projecting r on E, i.e., 

P ) E  

Therefore, working with ~ , ,  we can catch only those solutions of Lagrange 
equations which satisfy (4.10). However, varying qb, we catch all the solutions. 
Indeed, let r: M ---) P be a solution of the Lagrange equations. Then 17 o j is 
= r, where, as before, s: M ~ E is the section determined by r. Now there 
exists a Hamiltonian map associated with }g such that (4.10) holds (at least 
locally) and then one can easily see that %~, o j l r  = O. 

These considerations show that, as in the case of regular systems, also 
for a.r. Lagrangian densities the Lagrange equations can be put into a Hamilto- 
nian form. 

As we know from (4.5), every Hamiltonian form associated with ~ is 
an extension of ~Q. Now let ~ :  P ---)/~m T*E be any extension of ~Q, not 
necessarily of the form considered so far, and let ~: Q ---> J I P I Q  be a section. 
Then the equation 

(On ~ ~ - d ~ [ Q ,  u) = O, 

for each vertical field u: Q ---) VQ (4.12) 
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defines an affine subbundle H ~ Q of JIPI Q ~ Q. Clearly this definition 
does not depend on the choice of the Hamiltonian form extending ~a .  

The affine subbundle H ~ Q describes the constrained Hamilton equa- 
tions associated with the a.r. Lagrangian density 2~. We say that a section r: 
M ~ P satisfies the constrained Hamilton equations if it is an integral section 
of H, i .e. , j lr(x) a H for all x (in the domain of definition of r). 

Of course (Ker ~ + ) I Q  c H, for any Hamiltonian map * associated 
with ~s It follows that L C H (see Remark 4.5). Moreover, by their definitions, 
we see that both the manifolds L and H have the same dimension, namely 
m + ml + m2l. Hence L is an open submanifold of H. 

Note that an integral section r of H does not necessarily have the property 
that r = II o j ~s, where s: M --~ E is the section determined by projecting r 
on E. It is just this fact that may occur when L 4: H. 

It is convenient to have a coordinate characterization of  H --~ Q. 

Proposition 4.6. Let ~ be an a.r. Lagrangian density. Let ~: Q ~ J1PI Q 
be a section and let y[ o ~ = ~ ,  P~i ~ ~ = ~ i  be its local expression. Then 
the two following facts are equivalent: 

(i) ~ takes its values into H, i.e., ~: Q ~ H C j I p I Q .  
(ii) For each Hamiltonian m a p ,  associated with ~ we have 

(0)H 2 o , ) ( ~  - q~)  = 0 (4.13) 

~xi = OiL o ,  + (OiII~ o , ) ( ~ J  - , J )  = 0 (4.14) 

Proof. Let u: Q --~ VQ be any vertical vector field on Q. L e t ,  be any 
Hamiltonian map associated with ~ .  Since II: J1E ~ Q is a submersion, 
there exists a vertical field on j lE ,  say 

V = viOi "~ i k. VkO i . JIE  --~ VJ1E 

such that (at least locally) T11 o v o * = u, i.e., 

U = (V i ~  * ) 0  i -t'- [(V i o  *) (Oi l - I  2 o * )  -t'- (V~ o , ) (O/kII jP " o , ) ] o J  

Now let ~4, be the Hamiltonian form determined by *.  We have 

f~H o ~ - d~+lQ = (~ ,  + OiH,)~o | dy i + (O[H, - ~[)~o | dp) 

from which we get 

( a ,  o e - d~e, le ,  u) = (v i o *)[e~i + O i H ,  -~ (OilI 2 o , ) (OJ  H ,  - e J)] 

+ (v[o , ) (0)112 o +)(O~H, - ~ )  (4.15) 

Now the result follows from the identities (4.7) and (4.8). 
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An interesting consequence of the proposition is the following useful 
characterization of L. 

Corollary 4.7. Let 6: Q ---> H be a section. Then ~ takes its values into 
L iff it projects onto a section ~Q: Q ---> J1E of H, i.e., 

I-I C JJPIQ 

J X E ( - - ' - ~ ) Q  

Proof. If ~ is a section of L ---> Q, the first equation (3.7) shows that 
the property (4.16) holds. Conversely, let 6: Q ---> H be a section projecting 
onto a section ~Q: Q ---) JIE of 1T Then taking any associated Hamiltonian 
map which extends ~Q, (4.14) and (3.7) show that ~ takes its values into L. 

Remark 4.8. The relation of the pde described by H with the other 
equations in the literature is as follows. We can show that the three following 
facts are equivalent: 

(i) A section or: M ---> JiE satisfies the Cartan equation, i.e., 

cr*(u]d~:e) = 0 for each vertical field u: j1E ---> Vj1E 

(ii) The section r = II o or: M --> Q c P is an integral section of H. 
(iii) r satisfies the Hamilton-De Donder equation, i.e., 

r*(u]d~Q) = 0 for each vertical field u: Q ---> VQ 

The relationship between L and H is connected with the 'second-order 
equation' problem (Bintz et al., 1988; Gotay and Nester, 1980) as follows. 
Let or: M ---> JtE be a solution of the Caftan equation and let s: M ---> E be 
the section obtained by projecting on E. Does its lift j~s satisfy the Cartan 
equation? Or, equivalently, does s satisfy the second-order Lagrange equa- 
tions? The answer is positive iff the section r = H o or: M --~ P takes its 
values into L. 

4.2. Affine and Quadratic Lagrangian Densities 

Two classes of Lagrangian densities deserve special consideration, 
namely affine and quadratic Lagrangian densities (in the field derivatives). 
A Lagrangian density is affine if DII = 0 and quadratic if DZH = 0 (D 
denotes the fiber derivative). 

For instance, as is well known, the Lagrangian density of general relativ- 
ity, in the Palatini formalism, is affine. On the other hand, gauge theories 
provide examples in which the Lagrangian densities are quadratic. 
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Let us see that for these two classes of Lagrangian densities we have 
L = H .  

Proposition 4.9. Let ~s be an affine Lagrangian density. Then ~ is a.r. 
and L = H. 

Proof The local expression of ~ is 

L = IIiXy~ + a 

where Hi x and a are local functions on E. Its Legendre map H is given by 
the composition 

II  
fiE )Q C P 

X = II~o~ | dy i 

where Q = x(E) is the image of the (global) section X- Clearly ~ is a.r. 
Moreover, since any morphism Q -+ J tE over E is a section of I1~ from the 
Corollary 4.7 it follows that L = H. 

Proposition 4.10. Let 2e be an a.r. quadratic Lagrangian density. Then 
L = H .  

Proof Since the Legendre map II is affine, II: J1E --~ Q is an affine 
bundle and its associated vector bundle is 

Q •  
e 

where the fiber derivative 

m-I  

T*M | VE DH ) / ~  T*M | V*E 

E 

is a linear morphism of constant rank over E. 
Let ~: Q -+ H be a section and let ~e: Q --~ J ~E be the morphism over 

E determined by ~. Let qb be any associated Hamiltonian map. Then (4.13) 
shows that ~Q - qblQ is a section of 

Q • Ker DH --> Q 
E 

Since we can write ~e = qbIQ + ~a -- qbl Q, it follows that ~o is a section 
of 1]: JtE --~ Q. Hence Corollary 4.7 implies that ~ is a section of L --~ Q. 
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Remark 4.11. The Lagrangian of the free relativistic particle (Hanson 
et al., 1976) provides an example in which L ~ It. Here the fibers of H --~ 
Q are real lines, while those of L ~ Q are the corresponding positive 
half-lines. 

5. YANG-MILLS THEORY 

The Yang-Mills Lagrangian density, which is quadratic and a.r., provides 
a good example to illustrate the previous theory. 

5.1. The Configuration and Momentum Bundles 

Let ~ --> M be a principal fiber bundle with structure Lie group G 
(Kobayashi and Nomizu, 1963) and let us denote by C ---> M the bundle of 
its principal connections (Mangiarotti and Modugno, 1985). As is well known, 
this is an affine bundle whose associated vector bundle is 

T*M | Vc~ ----> M 
M 

Here the quotient bundle Vc@ = V~ ---> M is the vector bundle of right 
invariant vertical vector fields on ~ (gauge algebra bundle). Coordinates on 

r a[,~), respectively. C and J IC are denoted by (x x, a~) and (x • a~, 
The affine bundle C ---> M is the configuration bundle of the (free) 

Yang-Mills theory. 
Let A: M ~ C be a section, i.e., a principal connection (gauge potential). 

Locally we write 

(x x, a~) o A = (x x, A~) (5.1) 

where A~ are local functions on M. The curvature of A (field strength) is the 
following Vc~-valued 2-form on M: 

2 

FA: M - - > / ~  T ' M |  Vc~ 

1 (OxA~ r -I- r p q h dxIX @ er (5.2) FA = -~ -- O~A x C'pqAxA~)dx A 

where (er) is a local basis for the sections of Vc~ ---> M, while the Lie bracket 
[ep, eq] = Crpqer defines the right structure constants of G. 

Later we will need the fact that a principal connection A induces a 
covariant derivative V a in the vector bundle Va~' ---> M, whose parameters 
are determined by the following equation: 

OxJV aeq = crpqAPer (5.3) 
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The basic property of the configuration bundle C ~ M is that its first- 
order jet space J IC admits the following canonical splitting over C (Mangia- 
rotti and Modugno, 1985): 

2 

J~C = ~ Q / ~  T*M | Vc~l' 
C 

1 1 r P q (5 .4 )  
r = a,,x Pq k F~/ 2 - - a ~ , X  

ax,~ ~ (a~,~ + r -- c ~ aPa q~ + (a~,~ r + Cpqa• 

where ~ ---) C is an affine subbundle of J I C  ---) C whose associated vector 
bundle is C XM v2 T*M | Va~ ~ M. 

The sections S: C ~ ~ give rise to distinguished connections on the 
configuration bundle C ~ M which, locally, are characterized by 

r o S = S  r r __ r a h ,  p. h,l~, S k,p~ S1~,h "[- ~pq~k~Iz:'r ~ p  ~ q  = 0 (5 .5 )  

as follows from (5.4). These connections will be used to construct associated 
Hamiltonian maps. 

We have the projection 

2 

F: J1C-- )  / ~  T*M | VG~ 

1 
F = -~ F[~dx x A dx ~ | 

which has the property that 

e ,  F~w r __ r "[- rr nP~q (5.6) = ax,w a~,x -pq.- • 

1 
F o j 1A = ~ FA (5.7) 

Let us see that also the momentum bundle P ---) C ---> M admits a 
canonical splitting over C. Induced coordinates on P are denoted by (x x, 
ar _x,~ We recall that P = C X~t A m-1 T*M | TM | V~P, since V*C = I~ P r  )" 
C XM TM | V*P. Let us introduce the bundles 

/ / ~  2 m-2  

P -  = T * M  |  TM | V ~  = / ~  T ' M |  V * ~  

P+ T*M | V TM | (5.8) 
2 

whose induced coordinates are denoted by (x • p~X,~l) and (x x, p~X,~)), respec- 
tively, and the pullback bundles 
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Q =  c x  P- ,  R =  C X P +  (5.9) 
M M 

It follows that the momentum manifold P can be written as follows: 

P = Q G R  
c 

p),~ = p~X,~l + p~,~ 

(5.10) 
1 

p~,~ = ~ (P)'~ - p~,~) 

1 
p(~,~) = 2 (p),~ + pp,X) 

The canonical splittings (5.4) and (5.10) play a key role in the Yang- 
Mills theory. 

5.2. The Yang-Mills Equations 

Suppose that M is an oriented manifold that carries a pseudo-Riemannian 
metric g. Moreover, let h be a metric on the Lie algebra LG of G such that 
the adjoint representation is orthogonal. Then the Yang-Mills Lagrangian 
density is 

~: J1C ---> A T'M, ~ = Leo 

1 r hlx t = ~ I~lFx~Fr , F x~ = hrsgXag~f3FSf3 (5.11) 

As (5.6) shows, this is a quadratic Lagrangian density in the field derivatives. 
Its main property is expressed by the Legendre map II: J tC  --> P, 

plrX,~l o 11 ----- II[~ x,r = ] ~ F )  ~, p(X,~) o [I = 0 (5.12) 

or, equivalently, 

1 
(* o II) = F (5.13) 

where 
2 

Q - - e C x  AT*M| Vc@ 
M 

(X x, a~, p~X,~]) ~ x x, ap., 

is the Hodge operator. It follows that ~ is a.r. 

(5.14) 
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In the sequel we will need the following partial derivative: 

O~r z = - -  [,~]C~rqa q FXs p" = --CSrqaql-IXsP~ (5.15) 

Taking the composition of the projection ~Q: P --) Q with (5.14) and 
the injection C • ^2 T*M | VGP "-, T*M | VC, we get the following 
canonical soldering form on P: 

o" 

P---~ T ' M |  VC 

1 
- t. . . . . .  [~,,~1 ( 5 . 1 6 )  --r o O" ~ r I~ ,~hc~ ~lxl3Ys ax,~ O'x,~ [ ~  

which is linear over C. 
Using this soldering form, we see that any connection S as in (5.5) 

determines the following Hamiltonian map associated with ~:  

1 
fibs = S + ~ ~r " P --> J 1 C  

1 ( 5 . 1 7 )  

Indeed (5.5) and (5.13) show that II o fibs = 70: p ___) Q and hence the 
condition (4.1) is satisfied. Note that we have 

(r,s = 0 (5.18) 

everywhere on P [see (4.6)]. 
As we know from the previous section, we have L = H and hence 

(3.7) yields 

I t  ------ {x x, a[,, p(X,~) = 0, pfr x'~I = I , ~ l V  x~, pXx'r~ = --C'rq~kFs~ r~[k'l'z]l'J 
(5.19) 

where we have used (5.12) and (5.15). Of course, the integral sections r: M 
--~ P of I t  are the solutions of the Yang-Mills equations, i.e., 

, o X = FA, VAN = 0 (5.20) 

where A is a principal connection and X is a section of P -  ---) M. 

Remark 5.1. Going back for a moment to the general theory and recalling 
(2.7), let us introduce the following vector bundle over Q: 
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Z =  Ker ~ n l  Q r ) T ' M |  VPIQ 

a 

z - (x x, y", p ) ,  y [  = 0, ~ ,  = o}, (x x, yS, p))  �9 Q (5.21) 

From (4.12) one can easily see that Z C It. Moreover, the Hamilton equations 
[see (3.12) and (4.14)] have a freedom up to the trace condition ~ = 0. It 
follows that they are more appropriately described by the quotient bundle 
HIz--~ Q. 

In our present situation it can be shown that the further relation 

H/Z C J1Q/(Z 0 T*M | VQ) 

holds. This means that, up to Z, the Hamiltonian constraint Q c P is afirst- 
class constraint (extending the terminology of mechanics) (Sniatycki, 1974). 

5.3. The Complete Family of Hamiltonian Forms 

We know that any connection S: C --~ ~ C J lC determines a Hamiltonian 
map d?s: P --~ j I C  associated with the Yang-Mills Lagrangian density. 
According to (4.2), the corresponding Hamiltonian form ~+s -= ~ s  is 

~s: P ----> ~'~ T 'C,  ~s  = .X,~,4,~r -- HstO 

Hs = _x,~c~ + 1 1 t'r ox,~ -~ ~ hrSgx~g~p[~X'~lp~'N (5.22) 

where we have used (5.11) and (5.17). 
Note that ~ s  is quadratic in the momenta. Let ~ s  be the Hamiltonian 

map associated with ~ s  according to (3.10). From (5.18) it follows that CI)s 
= qb s everywhere on P and not only on Q C P. It turns out that these two 
properties characterize the family ~s.  Indeed, the following proposition can 
be easily proved. 

Proposition 5.2. Let ~ :  P - - - ) /~"  T*C be a Hamiltonian form and let 
dp: P ---> JIC be the Hamiltonian map associated with ~ according to (3.10). 
Let or,: P --~ T*M | VE be the soldering form on P determined by ~b as in 
(4.6). Suppose that: 

(i) 1 7 o ~ b o j = j .  
(ii) or+ = 0 everywhere on P. 
(iii) ~ is quadratic in the momenta. 

Then there exists a connection S: C --~ E C J~C such that 7~ = ~s. 
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Let us consider the Hamilton equations relative to any Hamiltonian form 
7s We begin with the first equation (4.10). If r = (A, • M --~ Q is a 
section, we have 

1 ( , o  7rx o j 1A + F o j 1A = j 1A = ~b s o r = S o A + ~ X) 

where we have used (5.4), (5.16), and (5.17). Here "rr~ denotes the canonical 
projection J t C  ---) ~.  Recalling (5.7), we see that the section r satisfies the 
first Hamilton equation relative to 7gs iff we have 

S o A = xr x o j 1A (5.23) 

. o X = FA (5.24) 

Note that the curvature FA is zero iff A is an integral section of the 
connection S. The condition (5.23) plays the role of a gauge-type condition. 
The second Hamilton equation (3.12) reproduces the equation v a •  = O. 

An interesting fact is that the family (5.22) is complete in the sense that 
any solution of the Yang-Mills equations can be seen as a solution of the 
Hamilton equations relative to a certain Hamiltonian form ~ s  (see also 
Remark 4.5). 

Indeed let A: M ~ C be a principal connection. Let K be a symmetric 
linear connection on M (for instance, the Levi-Civita connection of the metric 
g on M). Then we can define a linear connection on the vector bundle T*M 
| VG~ ~ M and hence on C ~ M. Using the projection -rr~: J1C ~ X, we 
get the following connection: 

S: C---) E C J I C  

r 1 {OxA~ + O~A~, - r P q APa q~ (5.25) Sx,w = -~ Cpq(axar + ~ x, 

v r r _ _  r p q - 2Kx~(a~ - A~) C'pqaxav~ } 

A direct check using (5.25) shows that the gauge condition (5.23) is satisfied. 
Hence if r = (A, X) is a solution of the Yang-Mills equations, S is the 
connection (5.25) associated with A, and ~ s  is the corresponding Hamiltonian 
form, then r is also a solution of the Hamilton equations relative to ~s.  

Remark  5.3. Note that (5.23) is a more general condition than the usual 
gauge conditions in gauge theory. As is well known, these latter single out 
(up to the Gribov ambiguity) a representative within a given gauge equiva- 
lence class. On the other hand, there are solutions of the Yang-Mills equations 
which are not singled out by the gauge conditions known in gauge theory. 
In this sense, these latter do not form a complete family. 
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